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Resilience represents the system’s ability to retain its basic or optimal functionality in the face of various disruptions (1–9).
Dynamic resilience and structural robustness are two essential aspects of overall system resilience and have attracted significant
attention from the scientific community and inspired many significant studies in different areas (10–16). Several different
mathematical constructs have been used to quantify various dimensions of systemic resilience. Dynamic resilience mainly
focuses on a system’s stability as it evolves according to single-dimension or multi-dimensional nonlinear dynamic equations.
Systems encompassing a wide range of dynamical networks have been modeled through dynamic resilience, which has calculated
the system response to different perturbations and helped to offer potential intervention strategies to enhance system resilience
(10–13). For the case of structural robustness, researchers are typically concerned about the ability of a static topological
network structure to maintain its functioning defined by connectivity, after suffering different disturbances, failures, or attacks
(14–16). This framework is mainly used to analytically understand system resilience through percolation theory. This approach
often also requires significant computational power to deal with large-scale networks where the theories corresponding to the
thermodynamic limit can be observed.

Since the modular interacting network (MIN) system in our study is composed of large subnetworks that are coupled to
each other, through specific interconnected nodes, we use percolation theory as an appropriate approach to study the resilience.
The coupling patterns in the real system are diverse, not only exhibiting predetermined coupling patterns between given pairs
of subnetworks, like a star, binary-tree, etc., but also including random coupling patterns where subnetworks are randomly
selected to connect to some other subnetworks. To design or enhance the resilience of infrastructures, one needs to understand
how resilience is affected by different coupling patterns. Here, we introduce two kinds of frameworks to study the system
resilience with different deterministic coupling patterns, and random coupling pattern following some distribution.
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Fig. S1. Schematic representation for two types of deterministic coupling patterns. (a) Starlike coupling pattern where a central sub-network i is coupling with the other jn
subnetworks. (b) A binary tree coupling pattern where sub-network i in one layer is coupled to two subnetworks in the next layer.

Deterministic coupling pattern

For the deterministic coupling pattern, the coupling between given pairs of subnetworks is predefined, as the examples shown in
Fig. S1. For this case, we define the following generating function for each sub-network i, as shown in Eq. [1] in the maintext,

Gi(xii, xji) = (1− ri)
∑
ki

Ps(ki)xk
i

ii + ri
∑
ki

Ps(ki)xk
i

ii

∏
j∈Γi

∑
kji

Pc(kji)xk
ji

ji . [1]

From Eq. [1], we can obtain the following generating functions of the branching process (14, 17),{
Gii(xii, xji) = (1− ri)

∑
ki

Ps(ki)ki
〈ki〉 xk

i−1
ii + ri

∑
ki

Ps(ki)ki
〈ki〉 xk

i−1
ii

∏
j∈Γi

∑
kji

Pc(kji)xk
ji

ji ,

Gij(xii, xji) =
∑

ki
Ps(ki)xk

i

ii

∏
h∈Γi\j

∑
kji

Pc(kji)xk
ji

hi

∑
kji

Pc(kji)kji
〈kji〉 xk

ji−1
ji ,

[2]

where Ps(ki)ki
〈ki〉 xk

i−1
ii and Pc(kji)kji

〈kji〉 xk
ji−1
ji represent probabilities of following a randomly chosen within subnetwork and between

subnetwork link to a node with ki links within subnetwork i, and kji links to subnetworks j, respectively. Here, ri represents
the fraction of nodes within subnetworks i that are also connected to the other subnetworks. And, we define 1− fii and 1− fij
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as the probability that a randomly chosen intra- and inter-link respectively, lead to a node that belong to the giant component
of the system. The following self-consistent equations, Eqs. [3], can then be solved (14, 18, 19),

{
fii = Gii(1− p(1− fii), 1− p(1− fji)),
fji = Gji(1− p(1− fjj), 1− p(1− fij)).

[3]

We define Si as the fraction of nodes belonging to the giant component within subnetwork i. After randomly removing 1− p
fraction of nodes, one can obtain from Eqs. [3] and Ref. (14)

Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] . [4]

Then the S fraction of nodes belonging to the giant component of the entire MIN system, can be found to be (14, 19)

S =
∑m

i
Si

m
, [5]

where m is the number of subnetworks.

Star coupling pattern. For the case of a star coupling pattern, Fig. S1(a) shows that subnetwork i has a predetermined coupling
with the other subnetworks jh, h = 1, · · · ,m− 1. Here, we test our theory for the case where the links within and between
subnetworks follow a Poisson degree distribution. For simplicity, we let Ni = N , ki = kjh = k, kijh = k̄ and r1 = rjh = r,
h = 1, · · · ,m− 1. Eqs. [1]-[4] become

{
Gi(xii, xji) = (1− r)ek(1−xii) + rek(1−xii)e(m−1)k̄(1−xji),

Gj(xjj , xij) = (1− r)ek(1−xjj) + rek(1−xjj)ek̄(1−xij).
[6]


fii = (1− r)ekp(fii−1)) + rekp(fii−1))e(m−1)k̄p(fji−1),

fij = ekp(fii−1))e(m−1)k̄p(fji−1),

fjj = (1− r)ekp(fjj−1)) + rekp(fjj−1))ek̄p(fij−1),

fji = ekp(fjj−1))ek̄p(fij−1).

[7]

{
Si = p(1− fii),
Sj = p(1− fjj).

[8]

S = p
[
1− 1

m
fii −

m− 1
m

fjj

]
. [9]

For the special case r = 1, k = k̄, Eq. [7] becomes

{
fii = fij = ekp(fii−1)e(m−1)kp(fjj−1),

fjj = fji = ekp(fjj−1)ekp(fii−1).
[10]

When the total number of links M is kept fix, the relationship between the different parameters is subject to the constraint

K̃ = 2mMintra

mN
+ 2(m− 1)Minter

mN
, [11]

where K̃ is the average of nodes in the whole MIN system, the size of subnetwork Ni = N , Mintra= kN/2 is the number of
internal links in each subnetwork and Minter= k̄rN is the number of inter-links between any two subnetworks. Furthermore,
from Eq. [11], we can obtain

K̃ = k + 2(m− 1)rk̄
m

. [12]

As shown in Fig. S2, the theoretical results agree well with simulations for different parameter values.
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Fig. S2. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p for a star coupling pattern, where the total number of links is fixed. The
theory comes from Eqs. [7]-[9] and [12]. (a) The parameters are m = 2, K̃ = 3 and k̄ = 3 for different values of r, (b) S2 as a function of p with the same parameters as (a)
for different r. (c) For parameters m = 3, K̃ = 4 and k̄ = 3, for different values of r. (d) For m = 4, K̃ = 6 and k̄ = 4, with different values of r. For the simulation results,
the size of the subnetworks is Ni = N = 107, i = 1, · · · ,m and results are averaged over 1000 independent realizations.

As m > 2, from Eq. [10], we get

p = ln fjj
k(fjj − 1) + k(fii − 1) = ln fjj

k(fjj − 1) + k(fjje(m−2)kp(fjj−1) − 1)
. [13]

For the case r = 1, when fjj → 1, the percolation threshold can be got

pc =
√
m− 1− 1
(m− 2)k . [14]

Likewise, for the limit m = 2, pc = 1
2k from Eq. [10], which is similar as in Ref. (14).

For the case of star coupling pattern, we consider the degree distributions within and between subnetworks follow Power-law
and Poisson distributions with exponent λi = λ and interaverage, Eqs. [1]-[4] become{

Gi(xii, xji) = (1− r)
∑

ki

[
( ki
kmin+1 )1−λ − ( ki+1

kmin+1 )1−λ]xkiii + r
∑

ki

[
( ki
kmin+1 )1−λ − ( ki+1

kmin+1 )1−λ]xkiii e(m−1)k̄(1−xji),

Gj(xjj , xij) = (1− r)
∑

kj

[
( kj
kmin+1 )1−λ − ( kj+1

kmin+1 )1−λ
]
x
kj
jj + r

∑
kj

[
( kj
kmin+1 )1−λ − ( kj+1

kmin+1 )1−λ
]
x
kj
jj e

k̄(1−xij).

[15]

fii = (1− r)
∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki

+

r

∑
ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki

e(m−1)k̄p(fji−1),

fij =
∑

ki

[
( ki
kmin+1 )1−λ − ( ki+1

kmin+1 )1−λ] (1− p(1− fii))kie(m−1)k̄p(fji−1),

fjj = (1− r)

∑
kj

[
(

kj
kmin+1 )1−λ−(

kj+1
kmin+1 )1−λ

]
kj(1−p(1−fjj))

kj−1∑
kj

[
(

kj
kmin+1 )1−λ−(

kj+1
kmin+1 )1−λ

]
kj

+

r

∑
kj

[
(

kj
kmin+1 )1−λ−(

kj+1
kmin+1 )1−λ

]
kj(1−p(1−fjj))

kj−1∑
kj

[
(

kj
kmin+1 )1−λ−(

kj+1
kmin+1 )1−λ

]
kj

ek̄p(fij−1),

fji =
∑

kj

[
( kmin
kj

)1−λ − ( kmin
kj+1 )1−λ

]
(1− p(1− fjj))kj ek̄p(fij−1).

[16]
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{
Si = p(1− fii),
Sj = p(1− fjj).

[17]

S = 1
m
Si + m− 1

m
Sj . [18]

As Fig. S3 shows, the theoretical results agree well with simulations for different parameters.
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Fig. S3. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p for a star coupling pattern within and between subnetworks follow
Power-law and Poisson distributions. The analytical results are from Eqs. [12] and [16] - [18]. The parameters are kmin = 1, kmax = 1000 for the Power-law distribution. (a)
λ = 2.5, K̃ = 5, k̄ = 5 and r = 0.3 for different m. (b) m = 4, K̃ = 5, k̄ = 5 and r = 0.3 for different λ. (c) m = 3, λ = 2.5, K̃ = 5 and k̄ = 5 for different r. The
simulation results are averaged over 1000 independent realizations for Ni = N = 107, i = 1, · · · ,m.

Binary tree coupling pattern. For the case of the binary tree coupling pattern, Fig. S1(b) shows that subnetwork i in one layer
has a deterministic coupling relationship to the two subnetworks of the next layer. From Eqs. [1] - [4], we can obtain the
following general formulas. For L = 2, Eq. [2] becomesG1(x11, x21) = (1− r1)

∑
k1
Ps(k1)xk1

11 + r1
∑

k1
Ps(k1)xk1

11

[∑
k
′ Pc(k

′
)xk
′

21

]2
,

G2(x22, x12) = (1− r2)
∑

kj
Ps(k2)xk2

22 + r2
∑

k2
Ps(k2)xk2

22
∑

k
′ Pc(k

′
)xk
′

12,
[19]

and for L > 2, Eq. [2] becomes

G1(x11, x21) = (1− r1)
∑

k1
Ps(k1)xk1

11 + r1
∑

k1
Ps(k1)xk1

11

[∑
k
′ Pc(k

′
)xk
′

21

]2
,

G2(x22, x12, x32) = (1− r2)
∑

kj
Ps(k2)xk2

22 + r2
∑

k2
Ps(k2)xk2

22
∑

k
′ Pc(k

′
)xk
′

12

[∑
k
′ Pc(k

′
)xk
′

32

]2
,

...

GL−1(xL−1,L−1, xL−2,L−1, xL,L−1) = (1− rL−1)
∑

kj
Ps(kL−1)xkL−1

L−1,L−1+

rL−1
∑

kL−1
Ps(kL−1)xkL−1

L−1,L−1
∑

k
′ Pc(k

′
)xk
′

L−2,L−1

[∑
k
′ Pc(k

′
)xk
′

L,L−1

]2
,

GL(xL,L, xL−1,L) = (1− rL)
∑

kj
Ps(kL)xkLL,L + rL

∑
kL
Ps(kL)xkLL,L

∑
k
′ Pc(k

′
)xk
′

L−1,L.

[20]

For both cases, Eqs. [3] - [5] become {
fii = Gii(1− p(1− fii), 1− p(1− fji)),
fji = Gji(1− p(1− fjj), 1− p(1− fij)).

[21]

Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] , [22]

and

S =

L∑
l=1

2l−1Si

2L − 1 . [23]

Additionally, when the number of total links is kept fix, the relations between the different parameters will be
K̃ = 2Mintra(2L−1)+2Minter2(2L−1−1)

(2L−1)N ,

Mintra = kN
2 ,

Minter = 2k̄rN
2 .

[24]
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Simplifying these gives,

K̃ = k + 4rk̄(2L−1 − 1)
2L − 1 . [25]

We apply our theory for the case where the degree distributions within and between subnetworks follow Poisson distributions.
For simplify let ki = k, kij = k̄, ri = r and Ni = N . As L = 2, Eq. [21] becomes

f11 = (1− r)ekp(f11−1) + rekp(f11−1)e2k̄p(f21−1),

f12 = ekp(f11−1)e2k̄p(f21−1),

f22 = (1− r)ekp(f22−1) + rekp(f22−1)ek̄p(f12−1),

f21 = ekp(f22−1)ek̄p(f12−1),

[26]

As L > 2, Eqs. [21] - [23] become

f11 = (1− r)ekp(f11−1) + rekp(f11−1)e2k̄p(f21−1),

f12 = ekp(f11−1)e2k̄p(f21−1),

f22 = (1− r)ekp(f22−1) + rekp(f22−1)ek̄p(f12−1)e2k̄p(f32−1),

f21 = f23 = ekp(f22−1)ek̄p(f12−1)e2k̄p(f32−1),

...

fL,L = (1− r)ekp(fL,L−1) + rekp(fL,L−1)ek̄p(fL−1,L−1),

fL,L−1 = ekp(fL,L−1)ek̄p(fL−1,L−1).

[27]

{
Si = p(1− fii),

S = p(1−
∑L

l=1
2l−1fl,l

2L−1 ).
[28]

Fig. S4(a) shows that the analytical and simulation results agree well. One can observe that the system exhibits an optimal r∗
for different parameter sets when the total number of links remain unchanged from Fig. S4(c)-(e). The critical threshold pc in
these figures is determined by the peak values of the second-largest component S2, as shown in Fig. S4(b).
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Fig. S4. (a) Comparison between analytical (lines) and simulation (symbols) results for a binary tree coupling pattern with Poisson degree distributions within and between
subnetworks. S as a function of p is shown, and the analytical results are obtained from Eqs. [25], [27] and [28]. The parameters here are L = 3, K̃ = 5, k̄ = 3. (b) S2 as a
function of p for different r with the same parameters as (a). (c)-(e) pc as a function of r are from Eqs. [27] and [28] for different parameters (c) L = 3 and K̃ = 5, (d) L = 3
and k̄ = 3, and (e) K̃ = 5 and k̄ = 3. Simulation results are averaged over 1000 independent realizations with Ni = N = 107.
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For the binary tree coupling pattern, the degree within and between subnetworks follow power-law distribution with exponent
λi = λ and Poisson distribution with interaverage degree k̄. As L = 2, Eq. [21] becomes

f11 = (1− r)
∑

k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1(1−p(1−f11))k1−1∑

k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1

+

r

∑
k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1(1−p(1−f11))k1−1∑

k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1

e2k̄p(f21−1),

f12 =
∑

k1

[
( k1
kmin+1 )1−λ − ( k1+1

kmin+1 )1−λ] (1− p(1− f11))k1e2k̄p(f21−1),

f22 = (1− r)
∑

k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2(1−p(1−f22))k2−1∑

k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2

+

r

∑
k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2(1−p(1−f22))k2−1∑

k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2

ek̄p(f12−1),

f21 =
∑

k2

[
( kmin
k2

)1−λ − ( kmin
k2+1 )1−λ] (1− p(1− f22))k2ek̄p(f12−1).

[29]

For L > 2, Eqs. [21]-[23] become

f11 = (1− r)
∑

k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1(1−p(1−f11))k1−1∑

k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1

+

r

∑
k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1(1−p(1−f11))k1−1∑

k1

[
( k1
kmin+1 )1−λ−( k1+1

kmin+1 )1−λ
]
k1

e2k̄p(f21−1),

f12 =
∑

k1

[
( k1
kmin+1 )1−λ − ( k1+1

kmin+1 )1−λ] (1− p(1− f11))k1e2k̄p(f21−1),

f22 = (1− r)
∑

k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2(1−p(1−f22))k2−1∑

k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2

+

r

∑
k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2(1−p(1−f22))k2−1∑

k2

[
( k2
kmin+1 )1−λ−( k2+1

kmin+1 )1−λ
]
k2

e2k̄p(f12−1)ek̄p(f32−1),

f21 = f23 =
∑

k2

[
( kmin
k2

)1−λ − ( kmin
k2+1 )1−λ] (1− p(1− f22))k2e2k̄p(f12−1)ek̄p(f32−1),

...

fL,L = (1− r)
∑

kL

[
( kL
kmin+1 )1−λ−( kL+1

kmin+1 )1−λ
]
kL(1−p(1−fL,L))kL−1∑

kL

[
( kL
kmin+1 )1−λ−( kL+1

kmin+1 )1−λ
]
kL

+

r

∑
kL

[
( kL
kmin+1 )1−λ−( kL+1

kmin+1 )1−λ
]
kL(1−p(1−fL,L))kL−1∑

kL

[
( kL
kmin+1 )1−λ−( kL+1

kmin+1 )1−λ
]
kL

ek̄p(fL−1,L−1),

fL,L−1 =
∑

kL

[
( kmin
kL

)1−λ − ( kmin
kL+1 )1−λ] (1− p(1− fL,L))kLek̄p(fL−1,L−1).

[30]

Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] . [31]

S =

L∑
l=1

2L−1Si

2L − 1 [32]

The theoretical results are testified by simulation results, as shown in Fig. S5.
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Fig. S5. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p. Analytical results are from Eqs. [30]-[32]. (a) The parameters are
L = 3, λ = 2.5, K̃ = 4, and k̄ = 4. (b) The parameters are L = 3, K̃ = 4, k̄ = 4, and r = 0.25. Simulation results are averaged over 1000 independent realizations
with Ni = N = 107.
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Besides the above examples, one can use the above analytical approach and generating functions to investigate the structural
resilience of any system with specific predetermined coupling patterns.

Random coupling pattern

In this section, we focus on coupling patterns based on random coupling following different distributions like random regular
(RR), Poisson, and power-law distributions (see Fig. 1 in the main text). The generating function for subnetwork i is shown in
Eq. [1] of the main paper. The following branching generating functions are (14, 17),Gii(xii, xji) = (1− ri)

∑
ki

Ps(ki)ki
〈ki〉

xki−1
ii + ri

∑
ki

Ps(ki)ki
〈ki〉

xki−1
ii

∑
K
Pu(K)

[∑
kji

Pc(kji)xk
ji

ji

]K
,

Gij(xii, xji) =
∑

ki
Ps(ki)xkiii

∑
K

Pu(K)K
〈K〉

[∑
kji

Pc(kji)xk
ji

ji

]K−1∑
kji

Pc(kji)kji
〈kji〉 xk

ji−1
ji .

[33]

where Pu(K)K
〈K〉

[∑
kji

Pc(kji)xk
ji

ji

]K−1
represents the probability of following a randomly chosen link to a subnetwork from a

subnetwork with K links in the MIN system. Similar to Eqs. [3] and [4], 1− fii and 1− fij , represent the probabilities that a
randomly chosen link within or between subnetworks belongs to the giant component respectively are{

fii = Gii(1− p(1− fii), 1− p(1− fji)),
fji = Gji(1− p(1− fjj), 1− p(1− fij)).

[34]

For the case of random coupling pattern, a node locating in the giant component of MIN must belong to the giant cluster Si
of subnetwork i, and also that the giant cluster Si should be contained in the largest component S̄ of the overall MIN. Thus,

S = S̄ · Si. [35]

The largest component S̄ composed of subnetworks connected via a random coupling pattern can be described by (17)

S̄ = 1− Ḡ0(X) = 1−
∑
K

Pu(K)XK . [36]

After randomly removing 1− p fraction of nodes, one can obtain from Eqs. [34] and Ref. (14),

Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] . [37]

RR coupling pattern. For the RR coupling pattern with average degree K, where Pu(K) = 1 and for all inputs other than K
the probability is zero. Then, Eq. [1] in the main paper becomes,

Gi(xii, xji) = (1− ri)
∑
ki

Ps(ki)xk
i

ii + ri
∑
ki

Ps(ki)xk
i

ii [
∑
kji

Pc(kji)xk
ji

ji ]K . [38]

For the case of nodes within and between the subnetworks both following Poisson degree distributions, we assume Ni = N ,
ki = k, kij = k̄ and ri = r, i, j = 1, · · · ,m, Eqs. [34]-[37] become{

fii = (1− r)ekp(fii−1) + rekp(fii−1)+Kk̄p(fji−1),

fji = ekp(fii−1)+Kk̄p(fji−1),
[39]

{
Si = p[1−Gi(1− p(1− fii), 1− p(1− fji))],
S = p(1− fii).

[40]

From Eq. [39], we can obtain

p = ln fji
k(fii − 1) +Kk̄(fji − 1)

=
ln fii−(1−r)ekp(fii−1)

r

k(fii − 1) +Kk̄( fii−(1−r)ekp(fii−1)

r
− 1)

. [41]

In the limit fjj → 1, one can obtain the critical threshold

pc =
(k + k̄K)−

√
(k − k̄K)2 + 4kk̄Kr

2kk̄K(1− r)
. [42]

Similarly, for keeping the total number of links fixed, we get

K̃ = 2(Mintra + KMinter)
N

= k + rk̄K. [43]
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Fig. S6(a)-(b) shows comparison of analytical and simulation results. It can be seen that simulation results agree well with the
analytical predictions. In Fig. S6(c), S2 as a function of p is shown, and pc being determined by the location of peak value of
S2 .
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Fig. S6. Comparison between analytical (lines) and simulation (symbols) results of S as a function of p for a RR coupling pattern. Analytical results are from Eqs. [39], [40] and
[43] for different r. (a) The parameters are K̃ = 6, K = 2 and k̄ = 3 for different r. (b) K̃ = 6, K = 3 and k̄ = 3 for different r. (c) S2 as a function of p with the same
parameters as (b) for different r. Simulation results are averaged over 1000 independent realizations with Ni = N = 106 and m = 104.

We next consider for the case of nodes within and between the subnetworks both following Power-law and Poisson degree
distributions. For simplify, let Ni = N , λi = λ, kij = k̄ and ri = r, i, j = 1, · · · ,m. Eqs. [34]-[37] become

fii = (1− r)
∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki

+

r

∑
ki

[
( ki

kmin+1 )1−λ−( ki+1
kmin+1 )1−λ

]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki

eKk̄p(fji−1),

fji =
∑

ki

[
( ki
kmin+1 )1−λ − ( ki+1

kmin+1 )1−λ] (1− p(1− fii))kieKk̄p(fji−1),

[44]

where kmin denotes the minimum degree within subnetwork. We then have{
Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] ,
S = Si.

[45]

In Fig. S7, we observe that analytical results agree well with simulation results.
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Fig. S7. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p. Analytical results are from Eqs. [44] and [45] with parameters
kmin = 1 and kmax = 1000. (a) The parameters are K̃ = 6,K = 3, k̄ = 3 and λ = 2.5 for different r. (b)K̃ = 6,K = 3, k̄ = 3 and r = 0.5 for different λ. Simulation
results are averaged over 1000 independent realizations with Ni = N = 106 and m = 104.

Poisson coupling pattern. In this subsection, we study the Poisson coupling pattern, and assume that each subnetwork is
connected to average K other subnetworks. For the case of nodes within and between the subnetworks both following Poisson
degree distributions with average degrees ki = k, kij = k̄, let Ni = N , ri = r, i, j = 1, · · · ,m, Eqs. [34]-[36] become{

fii = (1− r)ekp(fii−1) + rekp(fii−1)eK(ek̄p(fji−1)−1),

fji = ekp(fii−1)eK(ek̄p(fji−1)−1)ek̄p(fji−1).
[46]
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
Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] ,
S̄ = 1− e−KS̄ ,
S = S̄ · Si.

[47]

In the limit r = 1, kk̄ 6= 0, from Eq. [46], we find

p = ln fii −K(ek̄p(fji−1) − 1)
k(fii − 1) =

ln fji

e
k̄p(fji−1) −K(ek̄p(fji−1) − 1)

k( fji

e
k̄p(fji−1) − 1)

. [48]

Furthermore, as fji → 1, we obtain

pc =
(k + k̄ + k̄K)−

√
(k + k̄ + k̄K)2 − 4kk̄

2kk̄
. [49]

In a different limit of r = 1 and k = 0, from Eq. [46], we get

p = ln fji −K(ek̄p(fji−1) − 1)
k̄(fji − 1)

. [50]

Similarly, for fji → 1,

pc = 1
k̄(K + 1)

. [51]

For this case, the same formula as Eq. [43] can be used for the case where the number of links is held fixed. We see in Fig. S8
that analytical results agree well with simulation results.
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Fig. S8. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p for a Poisson coupling pattern. Analytical results are from Eqs. [46] and
[47]. (a) The parameters are K̃ = 14, K = 4, k̄ = 4 for different r (b) K̃ = 12, K = 4 and k̄ = 4 for different r. Simulation results are averaged over 1000 independent
realizations with Ni = N = 106 and m = 104.

For the case of nodes within and between the subnetworks both following Power-law with exponent λi = λ and Poisson
degree distributions with same average degree k̄, Eqs. [34]-[36] become

fii = (1− r)
∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki

+

r

∑
ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ−( ki+1

kmin+1 )1−λ
]
ki

eK(ek̄p(fji−1)−1),

fji =
∑

ki

[
( ki
kmin+1 )1−λ − ( ki+1

kmin+1 )1−λ] (1− p(1− fii))kieK(ek̄p(fji−1)−1)ek̄p(fji−1).

[52]


Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] ,
S̄ = 1− e−KS̄ ,
S = S̄ · Si.

[53]

Fig. S9 shows the agreement between analytical and simulation results for different parameters.
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Fig. S9. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p for a Poisson coupling pattern. Analytical results are from Eqs. (52) and
(53) with parameters kmin = 1 and kmax = 1000. (a) Here K̃ = 6, K = 3, k̄ = 3 and r = 0.5 for varying λ, (b) Here K̃ = 6, K = 3, k̄ = 3 and λ = 3.5 for different r.
Simulation results are averaged over 1000 independent realizations with Ni = N = 106 and m = 104.

Power-law coupling pattern. Here we consider the Power-law coupling pattern where each subnetwork connects to a number of
other subnetworks follows a power-law degree distribution with exponent λ, average degree K and minimum degree kmin. We
first deal with the case where the degree within and between the subnetworks follow Poisson distribution with average degrees
k and k̄. We assume ri = r, i = 1, · · · ,m, Eqs. [34]-[36] become


fii = (1− r)ekp(fii−1) + rekp(fii−1)∑

K

[
( K
kmin+1 )1−λ − ( K+1

kmin+1 )1−λ] eKk̄p(fji−1),

fji = ekp(fii−1)
∑

K

[
( K
kmin+1 )1−λ−( K+1

kmin+1 )1−λ
]
Ke

(K−1)k̄p(fji−1)∑
K

[
( K
kmin+1 )1−λ−( K+1

kmin+1 )1−λ
]
K

ek̄p(fji−1),
[54]

{
Ḡ0(X) =

∑
K

[
( K
kmin+1 )1−λ − ( K+1

kmin+1 )1−λ]XK ,

S̄ = 1− Ḡ0(f̄),
[55]

{
Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] ,
S = S̄ · Si.

[56]

Fig. S10 shows comparison between analytical and simulation results for the different parameters.
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Fig. S10. Comparison between analytical (lines) and simulation (symbols) results of S as a function of p for a power-law coupling pattern. Analytic results are from Eqs. (54)-(56)
with parameters kmin = 2 and kmax = 1000. (a) The remaining parameters here are λ = 4.5, k̄ = 2.5 and K = 2. (b) Here we show results for λ = 3.5, k̄ = 2.5 and
K = 2 with varying r. (c) Here we show results for λ = 2.5, k̄ = 2.5 and K = 2 for varying r. Simulation results are averaged over 100 independent realizations with
Ni = N = 105 and m = 105.

We next consider a power-law coupling pattern with exponent λ, minimum degree Kmin and the maximum degree Kmax.
For the case of nodes within and between the subnetworks both following Power-law degree distributions with exponent λi = λ̃,
average degree k, minimum degree kmin, maximum degree kmax, and λij = λ

′
, minimum degree k̄min, maximum degree k̄max,
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we assume Kmin = k̄min = kmin and Kmax = k̄max = kmax. Then, Eqs. [34]-[36] become

fii = (1− r)
∑

ki

[
( ki
kmin+1 )1−λ̃−( ki+1

kmin+1 )1−λ̃
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ̃−( ki+1

kmin+1 )1−λ̃
]
ki

+

r

∑
ki

[
( ki
kmin+1 )1−λ̃−( ki+1

kmin+1 )1−λ̃
]
ki(1−p(1−fii))ki−1∑

ki

[
( ki
kmin+1 )1−λ̃−( ki+1

kmin+1 )1−λ̃
]
ki∑

K

[
( K
kmin+1 )1−λ − ( K+1

kmin+1 )1−λ] [∑
k
′

[
( k′
kmin+1 )1−λ

′
− ( k

′
+1

kmin+1 )1−λ
′ ]

(1− p(1− fji))k
′ ]K

,

fji =
∑

ki

[
( ki
kmin+1 )1−λ̃ − ( ki+1

kmin+1 )1−λ̃
]

(1− p(1− fii))ki∑
K

[
( K
kmin+1 )1−λ−( K+1

kmin+1 )1−λ
]
K

[∑
k
′

[
(

k′
kmin+1 )1−λ

′
−( k

′
+1

kmin+1 )1−λ
′
]

(1−p(1−fji))k
′
]K−1∑

K

[
( K
kmin+1 )1−λ−( K+1

kmin+1 )1−λ
]
K∑

k
′

[
(

k′
kmin+1 )1−λ

′
−( k

′
+1

kmin+1 )1−λ
′
]
k
′
(1−p(1−fji))k

′
−1∑

k
′

[
(

k′
kmin+1 )1−λ

′
−( k

′+1
kmin+1 )1−λ

′
]
k
′

.

[57]

{
Ḡ0(X) =

∑
K

[
( K
kmin+1 )1−λ − ( K+1

kmin+1 )1−λ]XK ,

S̄ = 1− Ḡ0(f̄),
[58]

{
Si = p [1−Gi(1− p(1− fii), 1− p(1− fji))] ,
S = S̄ · Si.

[59]

As shown in Fig. S11, one can see that analytical results agree well with simulation results.
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Fig. S11. Comparison between analytical (lines) and simulation (symbols) results for S as a function of p for a power-law coupling pattern with power-law degree distributions
within and between subnetworks. The analytical results are from Eqs. (57)-(59) with parameters kmin = 2 and kmax = 1000. (a) The parameters here are λ̃ = 2.5,
λ
′

= 2.5 and λ = 2.5 with different r. (b) r = 0.3 for different λ̃ = λ
′

= λ. Simulation results are averaged over 500 independent realizations with Ni = N = 105 and
m = 105.

M&A network Data

From analyzing M&A network data of 18 years (2001-2018), the general information and statistical features for the two largest
M&A regions, Asia and America, are shown in Table S1,

Asia America Inter Network

Node 28165 19672 5269

Link 32037 21706 4588

Average Degree 2.274951 2.206791 1.741501

Min Degree 0 0 1

Max Degree 544 253 211

λ 2.6 2.6 2.6

r 0.12117877 0.09205978

Table S1. General information and statistical features.

The degree within subnetwork for Asia and America regions show Power-law distributions as shown in Fig. S12.
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Fig. S12. The degree distribution of two subnetworks.

Fig. S13(a)-(c) show comparison of simulation results between the network model and the real network for S as a function
of p. One can notice that there exists an optimal r∗ which is the same as the real network, as shown in Fig. 5(b) of the main
paper. Here the threshold pc is determined by using of peak value of S2.
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Fig. S13. (a)-(c) Comparison of simulation results for S as a function of p for network model and real network with the same parameters, as shown in Table S1, for different ∆r.
(d) S2 as a function of p for different ∆r for real network.
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